Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness
نویسندگان
چکیده
Arctic sea ice thickness distributions from models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) are evaluated against observations from submarines, aircraft and satellites. While it is encouraging that the mean thickness distributions from the models are in general agreement with observations, the spatial patterns of sea ice thickness are poorly represented in most models. The poor spatial representation of thickness patterns is associated with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. The climate models as a whole also tend to underestimate the rate of ice volume loss from 1979 to 2013, though the multimodel ensemble mean trend remains within the uncertainty of that from the Pan-Arctic Ice Ocean Modeling and Assimilation System. Although large uncertainties in observational products complicate model evaluations, these results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may become a reality.
منابع مشابه
Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates
A parallel ocean and ice model (POIM) in generalized orthogonal curvilinear coordinates has been developed for global climate studies. The POIM couples the Parallel Ocean Program (POP) with a 12-category thickness and enthalpy distribution (TED) sea ice model. Although the POIM aims at modeling the global ocean and sea ice system, the focus of this study is on the presentation, implementation, ...
متن کاملEvidence for ice-free summers in the late Miocene central Arctic Ocean
Although the permanently to seasonally ice-covered Arctic Ocean is a unique and sensitive component in the Earth's climate system, the knowledge of its long-term climate history remains very limited due to the restricted number of pre-Quaternary sedimentary records. During Polarstern Expedition PS87/2014, we discovered multiple submarine landslides along Lomonosov Ridge. Removal of younger sedi...
متن کاملImproved Arctic sea ice thickness projections using bias-corrected CMIP5 simulations
Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 global climate models (GCMs) produce a wide range of simulated SIT in the historical period (1979–2014) and exhibit various biases when compared with the Pan-Arctic Ice–Ocean Modelling and Assimilation System (PI...
متن کاملDo General Circulation Models Underestimate the Natural Variability in the Arctic Climate?
The authors examine the natural variability of the arctic climate system simulated by two very different models: the Geophysical Fluid Dynamics Laboratory (GFDL) global climate model, and an area-averaged model of the arctic atmosphere–sea ice–upper-ocean system called the polar cap climate model, the PCCM. A 1000-yr integration of the PCCM is performed in which the model is driven by a prescri...
متن کاملAircraft-based Estimates of Thin-ice Fraction near Sheba
The goal of the Surface Heat Budget of the Arctic Ocean (SHEBA) program is to gain knowledge of the important physical processes in, below, and above sea ice in order to improve their representation in global climate models. In order to provide the community with a test bed for evaluating sea ice model components, we are attempting to make accurate estimates of the thickness distribution for th...
متن کامل